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The properties of the time- and span-averaged mean wake recirculation region are
investigated in separated flows over several different two-dimensional bluff bodies. Ten
different cases are considered and they divide into two groups: cylindrical geometries
of circular, elliptic and square cross-sections and the normal plate. A wide Reynolds
number range from 250 to 140000 is considered, but in all the cases the attached
portion of the boundary layer remains laminar until separation. The lower Reynolds
number data are from direct numerical simulations, while the data at the higher
Reynolds number are obtained from large-eddy simulation and the experimental work
of Cantwell & Coles (1983), Krothapalli (1996, personal communication), Leder (1991)
and Lyn et al. (1995). Unlike supersonic and subsonic separations with a splitter plate
in the wake, in all the cases considered here there is strong interaction between the
shear layers resulting in Ka! rma! n vortex shedding. The impact of this fundamental
difference on the distribution of Reynolds stress components and pressure in relation
to the mean wake recirculation region (wake bubble) is considered. It is observed that
in all cases the contribution from Reynolds normal stress to the force balance of the
wake bubble is significant. In fact, in the cylinder geometries this contribution can
outweigh the net force from the shear stress, so that the net pressure force tends to push
the bubble away from the body. In contrast, in the case of normal plate, owing to the
longer wake, the net contribution from shear stress outweighs that from the normal
stress. At higher Reynolds numbers, separation of the Reynolds stress components into
incoherent contributions provides more insight. The behaviour of the coherent
contribution, arising from the dominant vortex shedding, is similar to that at lower
Reynolds numbers. The incoherent contribution to Reynolds stress, arising from
small-scale activity, is compared with that of a canonical free shear layer. Based on
these observations a simple extension of the wake model (Sychev 1982; Roshko
1993a, b) is proposed.

1. Introduction

The problem of the wake behind bluff bodies has been the subject of active scientific
investigation for more than a century. Owing to the complex nature of the problem,
only a few comprehensive theories have been put forth in the past and these have
enjoyed only limited success. One such theory, the free-streamline theory, dates back
more than a hundred years to Kirchhoff (1869), who considered the inviscid potential
flow past a bluff flat plate with an infinitely long wake at constant pressure equal to the
free-stream pressure. This simple theory was able to capture many essential features of
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separated flow over bluff bodies, but its prediction of drag coefficient, which for the
case of a bluff flat plate is 0±88, was significantly lower than actual measurements. This
lower prediction is due to the fact that unlike the infinitely long wake assumed in
Kirchhoff’s theory, the actual wake closes on itself and is finite in length.
Correspondingly the actual base pressure is significantly lower than the free-stream
pressure. Several improvements to the original theory have been proposed by
Riabouchinsky (1920), Roshko (1954), Wu (1962), Batchelor (1956) and Lighthill
(1945). All these models allow for the possibility of a base pressure different from and
lower than the free-stream pressure. Although the value of the base pressure cannot be
determined independently based on free-streamline theory alone, it serves as an
adjustable parameter. With an optimal choice for this parameter, these models
successfully predict the pressure distribution on the upstream side of the body and
provide acceptable predictions for the overall forces. Some of these models, which also
account for the finite size of the mean recirculation region in the wake (also referred
to as the mean wake bubble), relate the length and width to the base pressure. Although
these theories are generally obtained for a steady two-dimensional wake, they apply
equally well in the case of an unsteady three-dimensional wake, to the time- and span-
averaged properties of the wake and global quantities such as the mean lift and drag
coefficients. A thorough review of the free-streamline theories has been given by Wu
(1972).

In the past the prediction of base pressure has played a central role in wake
modelling. Chapman, Kuehn & Larson (1957) and Korst (1956) have independently
developed theories for base pressure prediction, primarily for supersonic flow. The
essential idea in both these theories is that the base pressure or the dead-air pressure
in the wake is calculated by equating the total pressure along the dividing streamline
to the static pressure downstream. The Reynolds and Mach number dependence of the
base pressure predicted by this simple theory has been well confirmed by experimental
results on various bluff bodies over a range of Reynolds and supersonic Mach
numbers. The main restricting assumptions made in this theory are that the
compression along the dividing streamline in the reattachment region is isentropic and
that additional pressure increase downstream of the reattachment point is neglected in
the theory. Furthermore, the Chapman–Korst theory is strictly valid only in the limit
of very small thickness of the separating shear layer compared to the dimensions of the
wake. Nash (1963) suggests an extension to the Chapman–Korst theory which takes
into account the influence of the finite thickness of the shear layer at separation and
the difference in pressure at reattachment from the final recovery pressure far
downstream. Further modifications to the Chapman–Korst theory have been proposed
by Roberts (1966), Carrie' re & Sirieix (1960) and Tanner (1973).

It is to be noted that in the case of supersonic separation, the periodic vortex
shedding mechanism, commonly observed at subsonic velocities, is largely suppressed.
This is an essential feature, since in the development of the above theories, the
separated shear layer is assumed to be steady and two-dimensional. Therefore,
Chapman et al. (1957) applied this theory to subsonic (and incompressible) separated
flows only when vortex shedding is suppressed, which can be accomplished by placing
a splitter plate in the wake of the bluff body. Roshko & Lau (1965) measured pressure
along the splitter plate in the wake of various bluff-body geometries at subsonic speeds
and pointed out that the problem with the application of the Chapman–Korst theory
to subsonic flows is in the appropriate definition of the downstream pressure. Instead
of the standard pressure coefficient, Roshko & Lau (1965) defined a reduced pressure-
rise coefficient, which when plotted against the distance from the base normalized by
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the length of the wake recirculation region, brilliantly collapsed the data as long as the
shear layer thickness at separation is small. They showed that the reduced pressure-rise
coefficient recovers uniformly for a variety of configurations to an asymptotic value of
0±35 while it is approximately 0±27 at the reattachment point. However, despite its
success in collapsing the data, this approach does not provide a way to determine the
base pressure independently.

Following Sychev (1982), Roshko (1993a, b) put forth a different approach for the
closure of the bluff-body wake problem. This model considers the equilibrium of the
mean wake recirculation region and a balance of force between the shear stress acting
along the top and bottom of the mean wake and the net pressure force. At sufficiently
large Reynolds numbers the viscous contribution to the shear stress is negligible and
with an empirical input for the best estimate of Reynolds shear stress, this approach
results in a relation between the length and width of the wake recirculation region and
the pressure difference between the base and the reattachment point. The free-
streamline theory provides the second relation between the dimensions of the wake and
the base pressure. By requiring that these two relations be simultaneously satisfied,
Roshko (1993a) was able to obtain theoretical estimates of base pressure and drag
coefficient for a normal plate with a splitter plate in the wake and these were found to
compare well with the experimental results of Arie & Rouse (1956) and Castro &
Haque (1987). Roshko (1993a, b) limited this analysis to wakes without vortex
shedding and suggested a possible universal description in this case. He clearly pointed
out problems that arise in extending this model to subsonic wakes with strong vortex
shedding. The main hurdle seems to be the lack of reliable experimental data on
pressure and Reynolds stress components in the near-wake region. For example,
pressure measurements in the wake without interfering with the flow are in general
difficult. Furthermore, accurate measurement of Reynolds stresses in the near-wake
region is challenging, since the size of the mean wake recirculation region decreases
significantly in the presence of vortex shedding.

In the present study we focus on an extension of the approach suggested by Sychev
(1982) and Roshko (1993a, b) to incompressible bluff-body wakes with strong shear
layer interaction and vortex shedding. We investigate the distributions of pressure and
Reynolds stresses and study the balance of forces within the time- and span-averaged
mean wake recirculation region. Four different geometries, namely circular, elliptic,
and square cylinders and a normal flat plate without a splitter plate in the wake, will
be considered. Direct numerical simulation (DNS) and large-eddy simulation (LES)
databases will be used to compute the pressure and Reynolds stress distributions in the
wake recirculation region. A significant limitation of the above simulations is that they
cover only a limited Reynolds number range from 250 to 4000. Therefore we have also
considered the experimental measurements of Cantwell & Coles (1983) and
A. Krothapalli (1996, personal communication) of the wake behind a circular cylinder
at Re¯ 140000 and Re¯ 3000, respectively, of Lyn et al. (1995) over a square cylinder
at Re¯ 21400 and of Leder (1991) for the flow around a normal flat plate at
Re¯ 28000. These experiments allow us to obtain high-Reynolds-number results for
the distribution of Reynolds stresses around the wake bubble. It was observed that the
computational results on the Reynolds stress distribution qualitatively agree with those
measured in the high-Reynolds-number experiments. Unfortunately, the computed
pressure distribution in the near-wake region could not be verified at higher Reynolds
numbers for lack of experimental measurements.

Based on the results, we observe that with the presence of vortex shedding and strong
interaction between the separated shear layers, the contribution from the Reynolds
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streamwise normal stress component to the streamwise force balance of the wake is not
negligible. In fact, for the case of circular, elliptic and square cylinders, the net force
from the Reynolds streamwise normal stress outweighs the net force from the Reynolds
shear stress, so that the net pressure force on the wake bubble tends to push it away
from the body. Thus the streamwise forces due to pressure and shear stress act along
the same direction and do not balance each other.

The importance of transition location relative to the separation and reattachment
points has been well recognized in wakes both with (Roshko & Fiszdon 1969) and
without vortex shedding (Chapman et al. 1957). At low Reynolds numbers, for
Re# 190 in the case of a circular cylinder, the near-wake vortex shedding is laminar.
With increasing Reynolds number, three-dimensional instabilities appear and the wake
becomes transitional (Williamson 1996). In these early regimes the Reynolds stress in
and around the mean wake recirculation region is primarily due to the time-dependent
nature of vortex shedding. In this limit, it is observed that the Reynolds shear stress is
relatively small along the periphery and the Reynolds normal stress is in approximate
balance with the pressure force. At very low Reynolds numbers, viscous stresses begin
to play a role as well. At higher Reynolds numbers, for 10$#Re# 2¬10& in the case
of a circular cylinder, the separated shear layers become unstable and the point of
instability moves progressively upstream towards the separation point with increasing
Reynolds number. At even higher Reynolds numbers the transition point moves up
into the attached boundary layers (Williamson 1996). In these shear layer transition
and boundary layer transition regimes, the Reynolds stress distribution can be
conveniently split into a coherent contribution arising from vortex shedding and an
incoherent contribution arising from the turbulent fluctuations, as shown by Reynolds
& Hussain (1972) and Cantwell & Coles (1983). At these high Reynolds numbers, the
coherent part of the Reynolds shear stress arising from vortex shedding is negligible
along the periphery of the mean wake bubble. However, the incoherent contribution
to Reynolds shear stress along the periphery is not negligible and increases in
magnitude with Reynolds number.

Furthermore, the above observations on the distribution of Reynolds normal and
shear stresses around the wake are in general found to be true even for the case of a
normal flat plate. The contribution to the force balance from the normal stress is
significant and that from the coherent component of the shear stress is small. In
contrast to the circular cylinder even at relatively low Reynolds numbers when
transition is limited to the wake, the contribution to Reynolds shear stress from the
incoherent part is seen to be significant. The underlying cause for this is the low-
frequency oscillation of the near-wake region (Roshko 1993a ; Lyn & Rodi 1994;
Najjar 1994), which is quite pronounced for flow past a normal plate. In addition, the
wake length is significantly longer and the net streamwise force arising from the shear
stress outweighs that from the normal stress. Thus the streamwise pressure force is
against the free-stream flow direction, similar to wakes without vortex shedding. These
differences between the cylinder and normal-flat-plate geometries suggest that by
controlling the dynamics of the separating shear layers, possibly in terms of the
thickness of the separating boundary layer, the shape of the bluff body can play an
important role in determining the Reynolds stress distribution and the force balance
within the wake (Roshko & Lau 1965; Tanner 1973). In order to explore further the
difference in the Reynolds stress distribution between the cylinder and normal-plate
geometries, we will examine the dynamics of the near-wake spanwise vortical structures
for these two types of bluff bodies and observe their relation to the character of the
mean wake and Reynolds stress distribution.
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F 1. Schematic showing the force balance on the mean separation bubble in the wake of a
circular cylinder. The base, separation points and the reattachment point at the end of the
recirculation zone are marked by B, S and R respectively.

Case Bluff body Re Methodology Investigator

1 Circular cylinder 300 DNS Present study
2 Circular cylinder 525 DNS Mittal & Balachandar (1995a)
3 Elliptic cylinder

0° AOA, 1:2 aspect
525 DNS Mittal & Balachandar (1995a)

4 Circular cylinder 3000 PIV A. Krothapalli (1996, personal
communication)

5 Circular cylinder 3900 LES Mittal (1996)
6 Circular cylinder 140000 Flying hotwire Cantwell & Coles (1983)
7 Square cylinder 21400 LDV Lyn et al. (1995)
8 Normal flat plate 250 DNS Present study
9 Normal flat plate 1000 DNS Najjar & Vanka (1995)

10 Normal flat plate 28000 PIV Leder (1991)

T 1. Details on the 10 different cases considered including the Reynolds number,
methodology and the source of the data

The rest of the paper will be organized as follows: §2 will present a simple force
balance around the mean wake recirculation region and appropriate pressure and
stress coefficients will be defined. The results for a circular cylinder at Re¯ 300 will be
presented first in §3.1, followed by results for other cylindrical bluff bodies in §3.2.
Coherent and incoherent contributions to Reynolds stress components will be
separated and analysed in §3.3. Results for the normal plate will be presented in §3.4.
In §3.5 the relation between Ka! rma! n vortex dynamics and the shape and size of the
mean wake as well as the contribution of the coherent contribution to Reynolds stress
will be discussed. Finally a discussion of results and conclusions will be presented in §4.

2. Force balance for the mean wake recirculation region

Here we follow Sychev (1982) and Roshko (1993a, b) and consider the balance of
streamwise forces acting on a mean wake recirculation region. Figure 1 shows a
schematic of the mean wake with forces acting on it. The length of the wake, L, is
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F 2 (a, b). For caption see facing page.

defined as the streamwise distance from the separation point (marked S) to the
reattachment point (marked R) and the half-height is denoted by H and it is measured
at the thickest point of the mean wake. Since we consider here a time-dependent and
possibly three-dimensional separated flow, the top and bottom boundaries of the mean
wake recirculation region are given by the separating streamlines of the time- and span-
averaged flow field. Hence the force balance will also be considered in the time- and
span-averaged sense. From the definition of the separating streamline there is no net
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F 2. Coherent Reynolds stress and pressure distribution in the wake of a circular cylinder at a
Reynolds number of 300. The Reynolds stresses are non-dimensionalized with respect to U #¢. Solid
and dashed lines denote positive and negative values respectively. The mean separation streamline is
shown by a thick line. The dotted line connecting the filled dots represents the trajectory of the
spanwise Ka! rma! n vortices as they form in the near wake and convect downstream. Each circular
symbol marks the position of the vortices after 1}10 of the shedding period. The three phases in the
vortex trajectory have also been marked. (a) Reynolds shear stress, (b) Reynolds streamwise normal
stress, (c) Reynolds cross-stream normal stress and (d ) pressure coefficient.
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flow through the boundary of the recirculation region. Thus the streamwise momentum
balance for the fluid inside the wake bubble can be expressed as
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where ¥Ω represents the boundary of the wake bubble and n
"
and n

#
are the direction

cosines of the outward unit normal to the boundary, ¥Ω. In the above equation velocity
is non-dimensionalized by the free-stream velocity U¢, length is non-dimensionalized
by a suitably chosen diameter D of the bluff body, and therefore Reynolds number is
defined as Re¯U¢ D}ν. The pressure and Reynolds stress components are accordingly
non-dimensionalized by ρU #¢ and U #¢. In (1) ua and pa are the time- and span-averaged
non-dimensional streamwise velocity and pressure, and u«# and u«�« are the
corresponding non-dimensional Reynolds streamwise normal and shear stresses. The
term on the right-hand side of (1) accounts for the net x force due to Reynolds and
viscous shear stresses. The two terms on the left account for the net pressure force and
force due to the Reynolds and viscous streamwise normal stresses, acting along the
negative x-direction. For completeness, forces due to the viscous stresses were also
included in (1). However, in the subsequent analysis, the viscous stresses will be ignored
since their contribution is expected to be small at high Reynolds numbers. Following
Roshko (1993b) the pressure, normal and shear stress coefficients are defined as
follows:
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where p
b
is the mean non-dimensional pressure at the base of the model and U

e
is the

non-dimensional velocity at the edge of the separated shear layer on the high-speed
side. In terms of these pressure and stress coefficients the approximate streamwise force
balance, neglecting the viscous contribution, can be written as

&
¥Ω

C
p
n
"
ds&

¥Ω

C
n
n
"
ds¯&

¥Ω

Cτ n
#
ds. (3)

The net contribution to the streamwise force balance from the pressure and Reynolds
normal and shear stresses can be defined as follows:
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In the following section the distribution of pressure and Reynolds stress coefficients
around the wake and their net contribution to streamwise force balance will be
considered for several canonical bluff-body geometries over a range of Reynolds
numbers.

3. Results

In the present study results obtained from a total of 10 different cases will be
considered. The two primary bluff bodies considered are a circular cylinder and a flat
plate held normal to the flow. Both these geometries are considered over a range of
Reynolds numbers. Additional results are provided for cylinders of elliptic and square
cross-sections. Detailed pressure and Reynolds stress distributions for six of the cases
are obtained from direct and large-eddy simulations. Owing to resolution requirements,
the Reynolds numbers for these numerical simulations are generally low, ranging from
250 to 3900. Therefore, the detailed experimental Reynolds stress measurements of
four other high-Reynolds-number cases are also analysed. Table 1 summarizes the
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Cross-section L}D H}D L}H U
e

Re*

Circular cylinder
Re¯ 300

1±21 0±51 2±37 1±360 416

Circular cylinder
Re¯ 525

1±19 0±52 2±29 1±388 758

Elliptic cylinder
Re¯ 525

1±98 0±50 3±96 1±245 654

Circular cylinder
Re¯ 3000†

1±768 0±635 2±78 1±54 5867

Circular cylinder
Re¯ 3900

1±99 0±60 3±32 1±350 6318

Circular cylinder
Re¯ 140000††

1±10 0±55 2±00 1±36 209440

Square cylinder
Re¯ 21400‡

1±88 0±74 2±54 1±445 45766

Normal plate
Re¯ 250

2±35 0±80 2±93 1±450 580

Normal plate
Re¯ 1000

2±55 0±854 2±98 1±488 2542

Normal plate
Re¯ 28000§

2±50 0±82 3±05 1±35 61992

T 2. Geometrical properties and high-speed velocity of the separating shear layer for the different
cases. † A. Krothapalli, personal communication (1996), †† Cantwell & Coles (1983), ‡ Lyn et al.
(1995) and § Leder (1991).

various cases considered and also provides the sources for these different experimental
and computational data. The direct numerical simulation data for the circular and
elliptic cylinders at Re¯ 525 are the same as those described and used in Mittal &
Balachandar (1995a, b). The large-eddy simulation of flow over a circular cylinder at
Re¯ 3900 has been addressed in Mittal (1996). The computational details and flow
statistics for the normal flat plate at Re¯ 1000 have been presented in Najjar & Vanka
(1995). The low-Reynolds-number simulation results of the circular cylinder at
Re¯ 300 and the normal flat plate at Re¯ 250 are particular to the present study.
Therefore, essential computational details on these cases alone will be presented.

3.1. Circular cylinder at Re¯ 300

We first present results for the canonical problem of flow over a circular cylinder at a
Reynolds number of 300, based on cylinder diameter. A Fourier–Chebyshev spectral
collocation method (Canuto et al. 1988) is used to simulate the flow in a body-fitted
elliptic cylindrical grid. The circumferential direction (θ) is intrinsically periodic and a
Fourier expansion is used in this direction. An appropriate spanwise length, L

z
, is

chosen for the simulation and the flow is assumed to be periodic in the spanwise
direction (z). This allows for the use of Fourier collocation along this direction. For
this particular simulation, L

z
¯ 1±8D, which is appoximately twice the spanwise

wavelength of the dominant mode B three-dimensional instability (Williamson 1996)
and therefore allows for two pairs of streamwise ribs in the spanwise direction. The
wall-normal direction (r) is non-periodic and therefore a Chebyshev expansion is used
for discretization. The infinite flow domain is truncated to a finite extent (15D in this
case) in the radial direction and non-reflecting boundary conditions are applied at the
outflow boundary. Furthermore, a mixed boundary condition is applied at the inflow
boundary which allows the incoming uniform flow to adjust to the displacement effect
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of the body. An 81¬160¬72 (r¬θ¬z) mesh is used and the solution has been shown
to be independent of the grid and radial domain size (Mittal & Balachandar 1997). A
two-step time-split method is employed to advance the solution in time through the
advection–diffusion and pressure-correction steps. A homogeneous Neumann pressure
boundary condition is used on the body in conjunction with a higher-order intermediate
velocity boundary condition. These boundary conditions satisfy no penetration exactly
and no slip to O(∆t$) accuracy on the cylinder surface where ∆t is the time-step size.
Further details of the numerical method can be found in Mittal & Balachandar (1996)
and Mittal (1995). The simulation predicts a mean drag coefficient and base suction
pressure coefficient of 1±27 and 1±04 respectively, which are slightly higher than the
corresponding experimental values of 1±22 (Wieselsberger 1922) and 0±96 (Williamson
1996). The predicted Strouhal number is 0±207 which is in good agreement with the
experimental value of 0±203 (Williamson 1996). It should be pointed out that at this
modest Reynolds number of 300, the flow is three-dimensional and time-dependent but
is dominated by the primary Strouhal frequency.
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periphery of the mean wake recirculation region. The pressure, shear stress and the streamwise
normal stress coefficients are shown by solid, dash–dot and dashed lines respectively. Owing to the
symmetry of the mean wake about the wake centreline (y¯ 0), these coefficients will only be
presented over the upper half of the wake. The locations of the base (B), separation (S) and
reattachment (R) points are marked along each of the closed loops with appropriate subscript p, n
or τ. Here, C

p
and C

n
are plotted against y around the bubble, so y ranges from 0 to approximately

0±5, whereas Cτ is plotted against x around the mean wake bubble. Therefore, the areas enclosed by
the closed curves provide the respective integrated x-force around the mean separation bubble. A
clockwise loop for shear stress corresponds to a positive [Cτ] with a net force due to shear stress along
the flow (or postive x) direction. An anticlockwise loop corresponds to positive [C

p
] and [C

n
] resulting

in corresponding pressure and normal stress forces opposite to the flow direction (or along the
negative x-direction). (a) Circular cylinder at Re¯ 300, (b) circular cylinder at Re¯ 525, (c) an
elliptic cylinder at Re¯ 525, (d ) a circular cylinder at Re¯ 3900. Also plotted on (d ) are the stress
coefficients evaluated from the experimental measurements of A. Krothapalli (1996, personal
communication) at Re¯ 3000. Here lines correspond to computational result (solid, C

p
; dashed, C

n
;

dashed–dot, Cτ) and symbols correspond to experimental results (¬, C
n
; , Cτ). (e) The experimental

results of Cantwell & Coles (1983) for a circular cylinder at Re¯ 140000. Pressure coefficient is
plotted only along the leeward side of the cylinder from the base to the separation point. ( f ) The
experimental results of Lyn et al. (1995) for a square cylinder at Re¯ 21400.

Figure 2(a) shows the non-dimensional Reynolds shear stress, u«�«, distribution
(non-dimensionalization is with U #¢). Also plotted are the separating streamlines of the
mean flow so that the correspondence between the Reynolds shear stress and the mean
wake recirculation region can be seen. The circular symbols denote the trajectory of the
Ka! rma! n vortices and this will be discussed in §3.5. The non-dimensional wake length
(L}D) measured from the separation to the reattachment point can be seen to be
approximately 1±21 and the corresponding non-dimensional half-height of the wake
(H}D) is 0±51. The length, width and some other properties of the mean wake bubble
are listed in table 2 for all the cases considered. In comparison, when vortex shedding
is inhibited with a splitter plate the resulting mean wake is significantly longer. For
example, in the case of a normal plate with a splitter in the wake Arie & Rouse (1956)
have measured the length of the mean wake recirculation region to extend up to 4±15
times the height of the normal plate and the resulting length-to-width aspect ratio to
be approximately 3±1. Similar results have been obtained as well for the case of circular
cylinders where shedding has been inhibited (Nishioka & Sato 1978; Fornberg 1980).
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Furthermore, from figure 2(a) it can be seen that the shear stress is significant only well
within the wake bubble or farther downstream outside it. The shear stress is very small
all along the separating streamlines, except perhaps near the reattachment point. The
magnitude of maximum shear stress also deserves some attention. In the case of non-
interacting shear layers the Reynolds stresses are significantly lower. For example, Arie
& Rouse (1956) measured the maximum Reynolds shear stress to be only about 2%
of U #¢. In contrast, with the presence of vortex shedding the non-dimensional Reynolds
shear stress can be observed to reach a much higher magnitude. Figure 2(a) shows a
peak magnitude of about 13%. Similarly, experimental results at higher Reynolds
number flows around circular and square cylinders also show non-dimensional
Reynolds shear stress to reach as high as approximately 13% (Cantwell & Coles 1983)
and 17% (Lyn et al. 1995), respectively.

The corresponding non-dimensional Reynolds normal stresses are shown in figures
2(b) (streamwise normal stress : u«#) and 2(c) (cross-stream normal stress : �«#). It is
evident that the normalized magnitudes of the normal stresses are significantly larger
than that of the shear stress, with peak values reaching 0±22 and 0±49 for the streamwise
and transverse components, respectively. This behaviour remains the same at higher
Reynolds numbers, as shown by Cantwell & Coles (1983) for a circular cylinder at
Re¯ 140000, where the peak values of streamwise and transverse normal stresses are
0±26 and 0±44 respectively. The corresponding peak values for a square cylinder at
Re¯ 21400 are even higher with u«# and �«# reaching 0±42 and 0±79 (Lyn et al. 1995).
Further it is observed from figures 2(a)–2(c) that while the shear stress is antisymmetric,
the normal stresses are symmetric about the wake centreline. The Reynolds streamwise
normal stress reaches a local minimum, whereas the Reynolds cross-stream normal
stress reaches a local maximum along the wake centreline. It can be seen that the
normal stresses, in particular the streamwise component which appears in the force
balance, are significant along the boundary of the mean recirculation region.

In figure 2(d ) the distribution of pressure coefficient, C
p
, is plotted. As observed in

many early works, the pressure coefficient reaches a minimum not at the cylinder base,
but at a short distance downstream. In the present case, this point of pressure minimum
falls slightly upstream of the reattachment point. The pressure recovery to the free-
stream value is not achieved at reattachment and in fact the reattachment pressure is
lower than the base pressure. Thus it is not only that the shear stress distribution along
the separating streamlines is too small to balance the pressure force, in fact, as will be
seen below, the net pressure force acts in the same direction as that due to the shear
stress. Clearly these two forces cannot be in balance and therefore they must be
balanced by the streamwise normal stress. This result is in stark contrast to the
corresponding scenario in wake flows without shear layer interactions, where the
pressure and shear-stress forces oppose each other and are in near balance.

Next we will consider in figure 3(a) the distribution of C
p
, C

n
and Cτ around the

periphery of the wake bubble. C
p

and C
n

are plotted against the y-location of
the periphery while Cτ is plotted against the x-location of the periphery. Owing to the
symmetry of the mean wake about the wake centreline (y¯ 0), these coefficients will
only be presented over the upper half of the wake. Since the origin is at the base of the
bluff body, the plots of C

p
and C

n
extend over 0! y# 0±5 and the plot of Cτ extends

over ®0±32#x# 0±89. As the boundary of the mean recirculation region is traced
from the base (marked B in figure 1) to the separation point (marked S in figure 1)
along the leeward side of the body, then to the reattachment point (marked R in figure
1) along the separating streamline, and then back to the base (marked B in figure 1)
along the wake centreline, the plots of C

p
, C

n
and Cτ result in a closed curve. From the
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Cross-section [C
p
] [C

n
] [Cτ] [C�

n
] [C� τ] [Cq

n
] [Cq τ]

Circular cylinder
Re¯ 300

®0±041 0±068 0±010 — — — —

Circular cylinder
Re¯ 525

®0±057 0±083 0±014 — — — —

Elliptic cylinder
Re¯ 525

®0±031 0±045 0±004 — — — —

Circular cylinder
Re¯ 3000†

E®0±026 0±110 0±084 — — — —

Circular cylinder
Re¯ 3900

®0±019 0±098 0±071 0±046 0±027 0±052 0±044

Circular cylinder
Re¯ 140000††

E®0±045 0±087 0±043 0±017 0±006 0±070 0±037

Square cylinder
Re¯ 21400‡

E®0±06 0±130 0±070 0±050 0±023 0±080 0±047

Normal plate
Re¯ 250

0±085 0±109 0±157 0±020 0±049 0±089 0±108

Normal plate
Re¯ 1000

0±061 0±115 0±165 — — — —

Normal plate
Re¯ 28000§

E0±032 0±116 0±139 0±012 0±025 0±104 0±114

T 3. Net contribution to streamwise force balance from pressure and Reynolds shear and
streamwise normal stresses. Also presented are the coherent and incoherent parts of the Reynolds
stresses contributions. † A. Krothapalli, personal communication (1996), †† Cantwell & Coles
(1983), ‡ Lyn et al. (1995) and § Leder (1991).

definition of the integrals in equation (3), the area enclosed by the closed curves
graphically provides the respective integrated force. Along each of these three closed
loops the corresponding separation and reattachment points are marked as S and R
with an appropriate subscript, p, n or τ. In following these closed loops it helps to note
that all three quantities, from their definition, are identically zero at the cylinder base
(B). The stress coefficients, C

n
and Cτ are zero along the base of the body (between B

and S
n

in the case of C
n

and between B and Sτ in the case of Cτ). Along the separated
streamlines (between S and R) all three quantities are in general non-zero. Finally, by
symmetry the shear-stress coefficient, Cτ, is zero along the wake centreline (between Rτ

and B).
The streamwise force balance represented in equation (3) is equally valid for wakes

where vortex interaction is prevented by a splitter plate. For this case, Roshko
(1993a, b) simplified the force balance to

kC
pr

H¯©CτªL (5)

where ©Cτª is the average shear-stress coefficient along the separating streamline, C
pr

is the pressure coefficient at the reattachment point and k is a constant arising from the
integration of pressure coefficient. H and L are the half-height of the mean wake bubble
and its length from the point of separation to the point of reattachment along the wake
centreline (see figure 1). With values of ©Cτª¯ 0±025 obtained from a canonical free
shear layer, C

pr
¯ 0±32 as obtained from the Chapman–Korst theory and k¯ 0±65

determined from the data of Arie & Rouse (1956), Roshko (1993a, b) obtained a
universal aspect ratio of L}2HE 4±2, in the limit of no shear layer interaction. Since
the pressure recovery is not complete by the reattachment point, a revised estimate of
the aspect ratio can be obtained from experimental measurements of the reattachment
pressure recovery coefficient. Based on the experimental measurements of Roshko &



180 S. Balachandar, R. Mittal and F. M. Najjar

Lau (1965), the pressure coefficient at reattachment can be better approximated as
C

pr
E 0±27, which results in an aspect ratio of L}2HE 3±5. This simple estimate

compares well with the experimentally observed aspect ratio of 3±1. Two key
assumptions for the above simplified force balance are that the pressure on the leeward
side of the bluff body between the two separation points is nearly a constant equal to
p
b
and that the contribution to the force balance from the normal stress is negligible.
Figure 3(a) will now be examined in the light of the above discussion. It can be seen

that the pressure on the leeward side (BS
p
) shows a small but definite variation.

However, since the pressure first increases away from the base and then decreases
rapidly as the separation point is approached, the assumption of constant base pressure
on the leeward side is reasonable and does not lead to serious error in the estimation
of pressure force. In fact, this assumption becomes better at higher Reynolds numbers.
However, since the reattachment pressure is lower than the base pressure, the pressure
integral in equation (3) is negative indicating that the net pressure force is along the
positive x-direction (Note that the terms on the left-hand side of equation (3) represent
forces due to pressure and normal stress pointing along the negative x-direction.) The
Reynolds shear stress is nealry zero, except near the reattachment point where it makes
a small contribution. The net contribution from the shear stress is the smallest of the
three. Contribution from the Reynolds normal stress is significant and it nearly
balances the pressure force.

For convenient interpretation of these stress and pressure coefficient distributions it
should be borne in mind that a clockwise loop (where the loop is from B to S to R and
back to B) for the shear stress corresponds to a positive [Cτ] with a net force due to
shear stress along the flow (or positive x) direction. A counterclockwise shear-stress
loop corresponds to a negative [Cτ]. On the other hand, based on their definition, an
anticlockwise loop for C

p
and C

n
corresponds to positive [C

p
] and [C

n
] resulting in

corresponding net pressure and normal stress forces acting opposite to the flow
direction (or along the negative x-direction). Net contributions of the pressure and
stress terms are presented in table 3. In the absence of viscous forces we expect
[C

p
][C

n
] to balance [Cτ] exactly. At this modest Reynolds number of Re¯ 300 the

forces due to pressure and Reynolds stresses do not perfectly cancel each other. The
difference is small and can be attributed to the viscous stresses.

3.2. Other bluff bodies of cylindrical cross-section

In the following we will examine the generality of the above results for changes in
Reynolds number and the geometry of bluff body. Figure 3(b) shows the C

p
, C

n
and

Cτ distributions around the mean recirculation region of a circular cylinder at a
Reynolds number of 525. The corresponding non-dimensional length and half-height
are computed as 1±19 and 0±52, respectively. It is therefore somewhat shorter and
thicker than the mean wake at Re¯ 300. The pressure and stress coefficients appear
very similar to the lower Reynolds number case shown in figure 3(a). The pressure
recovery remains far from complete by the reattachment point and the pressure here
is lower than the base pressure. The shear stress still makes only a small contribution
and the primary force balance is between the pressure force which is pointed along the
positive x-direction and the Reynolds streamwise normal stress pointed along the
negative x-direction. Owing to the higher Reynolds number, the relative contribution
from the viscous stresses, given by [C

p
][C

n
]®[Cτ], has somewhat decreased.

Figure 3(c) shows the C
p
, C

n
and Cτ distributions around the mean recirculation

region of an elliptic cylinder at zero angle of attack and with a major-to-minor axis
ratio of 2 at a Reynolds number of 525 (Mittal & Balachandar 1995a). The flow is
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aligned with the major axis of the elliptic cross-section of the cylinder and therefore the
minor axis is considered as the effective diameter, D, of the cylinder and used as the
reference length scale. The non-dimensional length (L}D) and half-height (H}D) of the
corresponding wake are about 1±98 and 0±5, respectively. Here D is the projected width
of the cylinder as seen by the flow, which is equal to the minor axis of the elliptic
cylinder. Since the bluffness of the cylinder has decreased, the aspect ratio of the wake
bubble has increased, resulting in a thinner and longer recirculation region. The
pressure and stress coefficients qualitatively appear similar to the circular cylinder cases
discussed above, but are smaller in magnitude. For example, the peak values of
normalized Reynolds streamwise normal, transverse normal and shear stresses for the
elliptic cylinder are respectively, 0±13, 0±31 and 0±09 (Mittal & Balachandar 1995a). The
corresponding peak values for the circular cylinder at Re¯ 525 are respectively 0±26,
0±62 and 0±15 (Mittal & Balachandar 1995a). Thus the Reynolds stresses are
significantly smaller for the elliptic cylinder at zero angle of attack. However the shear
layer velocity, U

e
, is lower for the elliptic cylinder and somewhat compensates for the

lower Reynolds stresses in the evaluation of the stress coefficients (see (2)). The shear
layer velocity, U

e
, used in the various cases is listed in table 2. In figure 3(c) it is

interesting to note that the shear stress changes sign along the separating streamline.
Close to the cylinder, over the first quarter of the separating shear layer (®0±5%x% 0),
the shear stress is nearly zero. Over 0%x% 1±1, the shear-stress coefficient along the
top side of the wake (y" 0) is negative and only near the reattachment point does the
shear-stress coefficient become positive. The resulting net contribution to the
streamwise force from the Reynolds shear stress, [Cτ], is observed to be very small, as
seen in table 3.

Next in figure 3(d ) we show C
p
, C

n
and Cτ for a circular cylinder at Re¯ 3900

(Mittal 1996). At this Reynolds number the instability has moved upstream into the
shear layers and manifests itself as Bloor–Gerrard vortices (Bloor 1964; Gerrard 1978).
A number of points require attention. With this increase in Reynolds number, the non-
dimensional length and half-width of the wake have increased to 1±99 and 0±6, and the
aspect ratio is slightly larger than its value at the lower Reynolds numbers. The shear-
stress coefficient reaches its peak value of about 0±1 near the reattachment point, which
represents a slight increase over the lower Reynolds number cases of 0±08. More
importantly, at this higher Reynolds number the shear stress remains significant over
much of the separating shear layer, except at its upstream end, close to the body. Thus
the Reynolds shear stress now makes an appreciable contribution to the overall force
balance. The streamwise normal stress around the mean wake bubble periphery is still
large, but the pressure coefficient has decreased in magnitude. The pressure along the
separating streamline (S

p
R

p
) near the reattachment point is now nearly a constant and

is lower than the pressure on the leeward side of the body. Therefore the net streamwise
force due to pressure, [C

p
], although relatively small, is still negative and points along

the positive x-direction. At this higher Reynolds number the viscous stresses are
observed to be negligible and the primary balance is between the Reynolds stresses and
pressure.

Also plotted in figure 3(d ) are the results of stress coefficients obtained from the PIV
measurements of A. Krothapalli (1996, personal communication) at Re¯ 3000. The
distributions of experimentally measured stress coefficients and their computational
counterpart show a similar trend. Based on an approximate balance between the
pressure force and Reynolds stresses, [C

p
] for the experiment can be estimated to be

®0±026. Furthermore, the computational and experimental results are in good
agreement. For example, the experimentally measured length and half-width of the
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F 4. Variation of computed coherent and incoherent componets of the shear and streamwise
normal stress coefficients along the boundary of the mean separation bubble. Dashed line corresponds
to the normal-stress coefficient and the dash–dot line corresponds to the shear stress coefficient ; *,
coherent contribution and ¬, incoherent contribution. (a) Circular cylinder at Re¯ 3900 (Mittal
1996). (b) The experimental results of Cantwell & Coles (1983) for a circular cylinder at Re¯ 140000.
(c) The experimental results of Lyn et al. (1995) for a square cylinder at Re¯ 21400.

wake are 1±8D and 0±64D. The computed peak normalized stresses in the wake region
are 0±21, 0±43 and 0±12 for u«#, �«# and u«�«, respectively and the corresponding values
from the experiments are 0±30, 0±48 and 0±15.

In figure 3(e) the distributions of stress coefficients evaluated from the flying-hot-
wire measurements of Cantwell & Coles (1983) for flow over a circular cylinder at
Re¯ 140000 are plotted. At this Reynolds number the attached boundary layer still
remains laminar at the separation point, but the transition point in the shear layer has
moved up closer to the separation point. The mean recirculation region has significantly
shrunk in size with the length being only 1±1D. The peak values of u«#, �«# and u«�« are
still close to their lower Reynolds number values at approximately 0±26, 0±44 and 0±13,
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respectively. The pressure coefficient along the base of the cylinder is also plotted. The
variation in the pressure coefficient along the cylinder base seems to be somewhat
larger at this higher Reynolds number than in the previous cases. A simple balance of
forces suggests that the average pressure coefficient along the separating streamlines is
approximately ®0±05. In other words, the average pressure along the leeward side of
the cylinder is still higher than the average pressure along the separating streamlines.
Therefore like the lower Reynolds number cases, the net pressure force is directed
along the positive x-direction. Since the pressure coefficient is not measured all around
the mean wake, in table 3 [C

p
] is estimated through an approximate force balance:

[C
p
]E [Cτ]®[C

n
].

Next we examine the experimental results of Lyn et al. (1995) for flow over a square
cylinder at Re¯ 21400. The flow over a square cylinder fundamentally differs from
flow over circular and elliptic cylinders in that the separation points are held fixed at
the front two sharp edges of the square cylinder. As a result the separating layers are
thinner for a square cylinder. Furthermore, while in the case of a circular cylinder the
base of the cylinder extends about half a diameter from the separation point in the
streamwise direction, in a square cylinder the base extends nearly twice as far into
the wake. In this sense the square cylinder is closer to the elliptic cylinder of aspect
ratio 2. The mean flow measurements of Lyn et al. (1995) along the centreline of the
wake gives a wake length of 1±88D, but the half-height of the wake can only be
approximately estimated as 0±74D. Figure 3( f ) shows a plot of C

n
and Cτ around the

wake bubble. The experimental data extend only part way up the separating streamline
and the stress coefficients over the reminder of the separating streamline, close to the
separation point near the front top leading edge, is simply sketched as a thin solid line,
in order to complete the closed loops. In spite of the significant differences in the
geometry of the bluff body, the distribution of stress coefficients around the wake
bubble is both qualitatively and quantitatively similar to the corresponding
distributions in the higher Reynolds number circular cylinder cases. However the
measured values of the peak normal and shear stresses, u«#¯ 0±42, �«#¯ 0±79 and
u«�«¯ 0±17 are somewhat higher than those of the circular cylinder. These higher levels
of Reynolds stress are comparable to those measured by Durao, Heitor & Perira (1986,
1988) in the wake of a square cylinder at Re¯ 14000. The shear stress is likely to
remain significant over most of the shear layer and make a significant contribution to
the force balance. The Reynolds streamwise normal stress around the wake is larger
than the shear stress suggesting that the net pressure force is still directed along the
positive x-direction.

3.3. Coherent and incoherent contribution to Reynolds stress

The change in behaviour from the low-Reynolds-number cases (Re% 525) to the
higher-Reynolds-number cases (Re& 3000) is not entirely surprising, given the
importance of transition location relative to the separation and reattachment points
(Chapman et al. 1957; Roshko & Fiszdon 1969). At the lower Reynolds numbers the
Reynolds stress in the near wake is predominantly due to the time-dependent nature
of the Ka! rma! n vortex street. At higher Reynolds numbers, although the velocity and
pressure fields are chaotic in the new wake, a dominant frequency corresponding to a
large-scale Ka! rma! n vortex shedding phenomenon can still be observed. However, since
transition occurs along the separated shear layers, apart from the dynamics of the
rolled-up vortex street, the instability of the separating shear layers and the near-wake
turbulence also contribute to the Reynolds stress.

In order to better understand the different contributions in the low- and high-
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Reynolds-number regimes, we applied the phase-averaging procedure suggested by
Reynolds & Hussain (1972) and Cantwell & Coles (1983). The flow variables (u, p) are
considered to be made up of three components : a long-time- and span-averaged mean
(u- , pa ), a periodic mean component (u4 , ph ) and a random component (u# , pW ) :

(u, p)¯ (u- , pa )(u4 , ph )(u# , pW ). (6)

From the above, a coherent component can be defined as the sum of the time-averaged
and the periodic mean parts as (ua , pa )(uh , ph ). The coherent component is computed
from a long-time average of the flow field at constant phase, where in experiments the
phase is determined from a reference signal, either for pressure or velocity, at a single
point (Cantwell & Coles 1983; Perry & Steiner 1987; Lyn et al. 1995). The coherent
component is therefore also referred to as the phase-averaged component. An average
of the coherent component over all the different phases will erase the phase information
and result in the time-averaged mean. Since in the present study we will be concerned
with the coherent component only in the near-wake region, contamination by phase
jitter (Hayakawa & Jussain 1989) may not be of great concern. In computing the phase
average the primary interest is in resolving only the dominant frequency of the Ka! rma! n
vortices and therefore typically only a limited number of phases (of the order of 16) are
used. Thus the random component, which constitutes the incoherent part, accounts for
all other fluctuations. It is important to note that the random component is not limited
to small-scale turbulent fluctuations alone. At low Reynolds numbers, the complex
dynamics of the laminar shear layers and the rolled-up Ka! rma! n vortices, such as
the low-frequency oscillation, if present, appears as part of the incoherent random
component. Furthermore, large-scale three-dimensionality, which is present at
Reynolds numbers even as low as 190 (Williamson 1996), can contribute to the
incoherent component.

The periodic mean (uh , ph ) and random components (uW , pW ) together account for all the
fluctuations, (u«, p«), about the long-time average. The conventional Reynolds stress
components, u«#, �«#, and u«�« presented in figures 2 and 3 are based on this total
fluctuation. The Reynolds stress can then be split into a coherent and an incoherent
component. The coherent component is defined as uh #¯3 (uh )# and uh �h ¯3uh �h , where
summation is over all the phases that make up a shedding cycle. The incoherent
component is then defined as uW #¯ u«#®uh # and uW �W ¯ u«�«®uh �h (Reynolds & Hussain
1972). The corresponding stress coefficients can also be written as (C�

n
,C� τ) and (Cq

n
,Cq τ).

Wherever appropriate, table 3 also provides the net contribution to the force balance
from the coherent and incoherent components of streamwise normal and shear
stresses.

Figures 4(a), 4(b) and 4(c) plot the coherent and incoherent Reynolds stress
coefficients for the three high-Reynolds-number cases : circular cylinder at Re¯ 3900
and 140000 and square cylinder at 21400, respectively. The computation of phase
average and the separation of Reynolds stresses into coherent and incoherent parts
from the experimental measurements have been presented in Cantwell & Coles (1983)
for the circular cylinder at Re¯ 140000 and in Lyn et al. (1995) for the square cylinder.
In the Re¯ 3900 circular cylinder case, the shedding cycle is divided into 12 phases of
equal extent, with the beginning of each cycle marked by the peak in the global lift
coefficient. It can be seen from the Re¯ 140000 case that along the periphery of the
mean recirculation region the coherent contribution to the shear stress is nearly zero
and that the large value of shear stress measured along the separating streamline is
mostly due to the incoherent part arising from the shear layer instability. At
Re¯ 3900, the coherent part of shear stress, C� τ, makes an appreciable contribution to
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the force balance and it resembles the shear stress distribution at Re¯ 525 seen in
figure 3(b). The incoherent contribution to the shear stress is larger than the coherent
contribution. Results for the intermediate Re¯ 21400 case are somewhere in between
with the coherent component of shear stress not entirely negligible, but significantly
smaller than the incoherent component. The peak value of the incoherent contribution
to shear stress is consistently around 0±05 for all the three cases, but a comparison of
the Re¯ 3900 and 140000 cases shows that as the transition point moves upstream
with increasing Reynolds number, the incoherent contribution to the shear stress
increasingly becomes non-zero along the shear layer close to the separation point. Thus
with increasing Reynolds number the overall contribution from the incoherent
component of the shear stress can be observed to increase.

At Re¯ 3900 the coherent component of the streamwise normal stress is comparable
to the incoherent component. As the Reynolds number increases, since the shear layers
are increasingly turbulent, the contribution from the coherent part significantly
decreases and the incoherent component arising from the turbulent fluctuations plays
the dominant role. While at Re¯ 3900 the peak value of the coherent component of
normal stress is larger than the peak value of the incoherent component, at
Re¯ 140000 the peak value of the incoherent component is significantly higher than
the coherent component. The crossover seems to occur around ReE 20000.

From the above results for bluff bodies of cylindrical cross-section it seems
reasonable to conclude that the contribution from the coherent component of the
Reynolds shear stress to the force balance is in general small. Furthermore at higher
Reynolds numbers, when the transition point has moved well up into the shear layers,
the coherent contribution to streamwise normal stress plays only a minor role in the
force balance. In other words, at high Reynolds numbers the coherent part of Reynolds
stress arising from the periodic evolution of the Ka! rma! n vortices may not be very
important. On the other hand, the incoherent component, which can largely be ignored
at the lower Reynolds numbers, plays an increasingly important role at higher
Reynolds numbers. It must be stressed that the above statements pertain only to the
distribution along the boundary of the mean wake recirculation region. For example,
the coherent part of the shear stress, C� τ, can still be significant inside and outside the
mean recirculation region.

3.4. Results for a normal plate

We now investigate flow around a normal flat plate without a splitter plate and
consider the force balance of its wake. It will be seen below that the results obtained
for this case of a normal plate are significantly different from those of the cylindrical
bluff bodies discussed in the previous sections. The separation points on a normal plate
are fixed at the edges. Furthermore the angle the separating streamline makes with the
horizontal as it leaves the surface is much larger in a normal plate, resulting in a much
longer and thicker wake bubble than that of a circular cylinder. These features of the
normal plate are also shared by the square cylinder. In fact, the square cylinder can be
considered as a normal plate with an afterbody. As will be seen below the presence of
the afterbody significantly alters the dynamics of the shear layers as well as the
Reynolds stress and pressure distributions.

In order to highlight this difference we first consider direct numerical simulation
results of flow over a zero-thickness normal flat plate at Re¯ 250. In brief the
governing time-dependent Navier–Stokes and continuity equations were solved in
three dimensions using a higher-order finite difference scheme. A fifth-order upwind-
biased scheme is used for the convective term, while a fourth-order central difference
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F 5. Reynolds stress and pressure distribution in the wake of a normal plate at a Reynolds
number of 250. Solid and dashed lines denote positive and negative values respectively. The mean
separation streamline is shown by a thick line. (a) Reynolds shear stress : 13 contours marked 1 to D
corresponding to values ®0±12 to 0±12 in steps of 0±02. (b) Reynolds streamwise normal stress : 11
contours marked 1 to B corresponding to values 0±02 to 0±22 in steps of 0±02. (c) Reynolds cross-
stream normal stress : 8 contours marked 1 to 8 corresponding to values 0±05 to 0±4 in steps of 0±05.
(d ) Mean pressure coefficient : 9 contours marked 1 to 9 corresponding to values ®0±2 to 0±6 in steps
of 0±1.

scheme is used for the diffusion term and the Pressure Poisson equation. Discretization
in time uses a second-order-accurate time-splitting procedure with a fully explicit
Adams–Bashforth scheme for both the convective and diffusive terms. The
computational domain extends 5 non-dimensional units upstream of the normal plate
to 20 non-dimensional units in the downstream direction. In the cross-stream direction
the computational domain extends from ®8 to 8 non-dimensional units. The
spanwise width of the computational domain is chosen to be 2π and periodic boundary
conditions are applied along the spanwise direction. Uniform free-stream conditions
are applied at the inlet and at the top and bottom boundaries of the computational
domain. A convective boundary condition is applied at the outlet. A grid of
192¬128¬48 along the streamwise, transverse and spanwise directions is employed
with a non-uniform mesh along x and y. Simulations were carried out for a long
duration of 512 non-dimensional time units covering approximately 72 shedding
cycles. Numerical details can be found in Najjar (1994).

In figures 5(a), 5(b), 5(c) and 5(d ) we present the distributions of normalized
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F 6. Same as figure 3(a) for a normal plate at (a) Re¯ 250, (b) Re¯ 1000 (Najjar & Vanka
1995), (c) the experimental measurements of Leder (1991) at Re¯ 28000.

Reynolds shear and streamwise normal stresses along with the distribution of the
pressure coefficient in the near-wake region of a normal plate at Re¯ 250. For visual
reference, the outline of the mean recirculation region has been superimposed in these
figures. The Reynolds stresses appear qualitatively similar to the corresponding
distributions for a Re¯ 300 circular cylinder shown in figures 2(a) and 2(b), but some
differences can also be observed. The magnitude of normal stresses is larger than that
of the shear stress. The peak values of u«#, �«# and u«�« are respectively 0±23, 0±42 and
0±13. These peak values of Reynolds stress components compare well with those of the
circular cylinder. However, both the normalized length (L}D¯ 2±35) and half-height
(H}D¯ 0±8) are significantly larger for the normal plate than for the circular cylinder.
Since the increase in length has somewhat outweighed the increase in width, the aspect
ratio (L}H ) is also large for the normal plate. Correspondingly the stress and pressure
distributions have extended further along the downstream direction.
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Figures 6(a) and 6(b) show C
p
, C

n
and Cτ around the wake for Re¯ 250 and 1000.

The distributions of stress coefficients at these two Reynolds numbers remain
qualitatively the same and they compare satisfactorily with the high-Reynolds-number
cylinder cases (see figures 3d, 3e and 3 f ). Unlike the case with a splitter plate
considered by Arie & Rouse (1956) and Roshko (1993a), the contribution to the force
balance from streamwise normal stress is significant without a splitter plate in the
wake. Even at the lower Reynolds number, the shear stress remains significant over
most of the separating streamline. This coupled with the significantly longer wake
results in a net streamwise force due to shear stress larger than that due to the normal
stress. Thus the net pressure force, [C

p
], is positive and is directed against the flow

direction. This is in stark contrast to all the cylinder cases considered above. This
difference can be attributed to the fundamental change in the distribution of the
pressure coefficient. In particular, in the case of a normal plate the reattachment
pressure is significantly higher than the base pressure. From table 3 it can be observed
that with increase in Reynolds number the net contribution from the Reynolds stresses
slightly increases ; however the pressure force on the wake bubble somewhat decreases.

PIV measurements of Leder (1991) for flow over a normal flat plate at Re¯ 28000
have been digitized to obtain the corresponding stress coefficients along the periphery
of the mean recirculation region. The results obtained for C

n
and Cτ are presented in

figure 6(c). Since Reynolds stress data are not available close to the normal plate near
the separation point, a possible extension of the available data into this region is
sketched in the figure as a thin solid line. These high-Reynolds-number experimental
data are in close qualitative and quantitative agreement with the computational results.
Although the pressure distribution was not directly measured in the experiments
(Leder 1991), an approximate force balance which ignores the viscous stresses places
the net contribution to the force balance from pressure at [C

p
]¯ 0±032. Thus the mean

pressure along the separating streamline is expected to be higher than the mean base
pressure.

Figures 7(a) and 7(b) show the coherent and incoherent contributions to Reynolds
stresses for the Re¯ 250 and 28000 cases. In the high Reynolds number case, the
coherent and incoherent data were obtained directly from Leder (1991). At Re¯ 250,
the shedding cycle is divided into 12 phases of equal extent, with the beginning of each
cycle marked by the peak in the global lift coefficient. It is important to note that even
at this low Reynolds number the flow variation was not a simple sinusoidal. The time
variation in the lift and drag coefficients shown in figure 8 indicates the presence of a
low frequency in addition to the dominant shedding frequency. Here, owing to the
idealized normal plate of zero thickness employed in the computations, the lift force
is entirely due to the viscous stresses and the drag force is from pressure. It can be
observed that the shedding frequency, or the time separation between adjacent lift
peaks, varies considerably from shedding cycle to shedding cycle. Lisoski (1993) has
shown a similar variation in lift and drag coefficients for a normal plate at Re¯ 5000
(also see Roshko 1993a). Therefore, in computing the phase average, the compu-
tational data dumps which were uniformly spaced in time were assigned to
appropriate phase bins based on the lift coefficient. Each bin was averaged to obtain
the phase-averaged flow field, which then yielded the coherent component of the
Reynolds stress.

It can be observed that similarly to the circular cylinder wake the coherent
contribution to Reynolds stresses decreases with Reynolds number. However, the
incoherent component of both the streamwise normal and shear stresses are remarkably
close at the two Reynolds numbers. The existence of the incoherent component to
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F 7. Same as figure 4(a) for a normal plate at (a) Re¯ 250, (b) for the experimental
measurements of Leder (1991) at Re¯ 28000.

Reynolds stresses even at Reynolds numbers as low as 250 seems surprising. From its
definition it is clear that the coherent part of the Reynolds stress accounts only for the
fluctuation about the time mean due to an average representative shedding cycle. It is
evident from figure 8 that the flow variation from cycle to cycle is strong due to the low-
frequency oscillations observed in the shedding process (Lisoski 1993; Roshko 1993a ;
Lyn & Rodi 1994; Najjar 1994; Najjar & Balachandar 1997). This complex behaviour
of the shedding process is the contributing factor for the incoherent component of the
Reynolds stress. At higher Reynolds numbers, when the shear layers are transitional,
small-scale turbulent fluctuations can also contribute to the incoherent component.

3.5. KaU rmaU n �ortex dynamics, mean wake recirculation region and coherent stresses

From the above results it appears that there are a number of common features that are
shared by all the geometries considered here and perhaps by all bluff bodies in general.
First, it is observed that over the entire range of Reynolds number the coherent
contribution to the Reynolds shear stress is sufficiently small along the separating
streamlines that it can be ignored in the force balance. Secondly, in all the low-
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F 8. Time variation of the drag and lift coefficients for the flow
over a normal plate at Re¯ 250.

Reynolds-number cases considered the contribution to the force balance from the
coherent component of the Reynolds streamwise normal stress is significant. By
definition, the coherent part of Reynolds stress arises from the periodic evolution of the
span-averaged two-dimensional Ka! rma! n vortices. Furthermore, the shape of the mean
wake remains reasonably the same for all the different bluff bodies considered,
although the actual size in terms of length and width shows some variability. The shape
and size of the mean recirculation region, obtained from the mean velocity field, are
again largely dictated by the dynamics of the Ka! rma! n vortices. Therefore in order to
explain these generic behaviours, coherent Reynolds stresses around the wake and their
relation to the evolution of the Ka! rma! n vortices need to be explored.

To illustrate the vortex dynamics, as an example in figure 9 contours of span- and
time-averaged spanwise vorticity, ω

z
, are shown at six different time instances, each

separated by one-tenth of a shedding cycle for the Re¯ 300 circular cylinder case. The
entire sequence covers one half of a shedding cycle. The spanwise vorticity distribution
over the next half of the shedding cycle will be approximately the mirror image of the
ones shown about the wake centreline. Thus the evolution of the vortices can be
followed over the entire shedding cycle. In figure 9 the trajectories of both the clockwise
and counterclockwise rotating vortices are traced out by the filled dot symbols. These
trajectories have been determined by identifying the centroid of the spanwise vortices
as they form and convect downstream (Cantwell & Coles 1983). In the early stages of
the formation process, the vortex centre is not easily identifiable in terms of the
spanwise vorticity distribution, but can be captured by a careful examination of the
imaginary eigenvalues of the velocity gradient tensor, which has been well established
to extract vortices with local circular or spiralling streamlines (Dallmann et al. 1991;
Chong, Perry & Cantwell, 1990; Mittal & Balachandar 1995b). The trajectory shown
in this figure gives a good representation of the motion of the spanwise vortices during
their evolution and this qualitative picture will be sufficient for the present investigation.
Since each adjacent symbol represents the position of the vortex after 1}10 of the
shedding period, the distance between neighbouring symbols provides qualitative
information on the velocity of the vortex core during the various stages of the shedding
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F 9. A series of plots showing contours of span-averaged spanwise vorticity in the near wake
of a circular cylinder at Re¯ 300. Each plot is separated in time by 1}10 of the shedding period and
the six plots cover one half of the shedding period. Solid and dashed lines denote positive and negative
values respectively. The mean separation streamlines and the vortex trajectories have also been
superposed.

cycle. The very first point in the immediate wake of the cylinder corresponds to the
position of incipient roll-up of the spanwise vortex.

A close observation of the trajectory and the vortex shedding process shows that the
movement of the spanwise vortices can be divided into three distinct phases. These
phases have been marked in figure 2 where the location of the Ka! rma! n vortices has also
been marked by filled dots. Phase I extends over half a shedding period beginning from
the formation of a new spanwise vortex and during this stage the vortex, which is in
the process of roll-up, slowly moves towards the centreline. Phase II also extends over



192 S. Balachandar, R. Mittal and F. M. Najjar

u′ > 0
v′ > 0
u′v′ > 0

u′ > 0
v′ < 0
u′v′ < 0

II I

u′ < 0
v′ > 0
u′v′ < 0

u′ < 0
v′ < 0
u′v′ > 0III IV

Clockwise vortex

u′ < 0
v′ < 0
u′v′ > 0

u′ < 0
v′ > 0
u′v′ < 0

II I

u′ > 0
v′ < 0
u′v′ < 0

u′ > 0
v′ > 0
u′v′ > 0III IV

Counter-clockwise vortex

F 10. Schematic showing the velocity perturbation and correlation produced by two
idealized spanwise Ka! rma! n vortices.

half a shedding period and its beginning is marked by the change in the direction of
movement of the spanwise vortex. This direction change is due to the movement of the
vortex from the other shear layer towards the wake centreline. During Phase II the
vortex convects slowly along the streamwise direction while staying close to the
centreline. During Phase III, the vortices initially accelerate along the streamwise
direction and subsequently move slightly away from the centreline. Again this
movement is a result of the vortex from the other shear layer entering Phase II.

The relation between the trajectory of Ka! rma! n vortices and the shape of the mean
wake recirculation region is explored by superimposing on figure 9 the mean separating
streamlines, which define the top and bottom boundaries of the recirculation region.
From the figure it appears that the mean wake encloses most of the first and part of
the second phase of the spanwise vortex evolution. We note that the size of the
recirculation region can be determined primarily from the location of the reattachment
point, since the separation points are approximately known from the bluff body shape
and the nature of separation. While from symmetry the mean vertical velocity is zero
along the entire wake centreline, the streamwise velocity changes sign at the
reattachment point. The effect of both clockwise and counterclockwise vortices is to
induce a negative streamwise velocity along the wake centreline. It can be seen that
during Phase I the vortices primarily move towards the wake centreline and therefore
the induced negative streamwise velocity along the wake centreline is strongest around
xE 0±5. In contrast, Phase III is marked by a decrease in the ability of the vortices to
produce backflow at the wake centreline. This is due to the fact that the vortices
accelerate in the streamwise direction and also move away from the wake centreline.
From these observations it stands to reason that the reattachment point will lie
somewhere along the Phase II region of the trajectory. Figure 2 clearly shows that the
reattachment point lies in the early part of Phase II.

Next we attempt to understand the coherent contribution to Reynolds stress
distributions along the separating streamlines based on the dynamics of the clockwise
and counterclockwise Ka! rma! n vortices. Insight into the Reynolds stress distribution
can be obtained by considering the velocity perturbation induced by the spanwise
Ka! rma! n vortices. Figure 10 is a schematic showing the velocity perturbations induced
by two idealized spanwise Ka! rma! n vortices. It is clear from this figure that the
streamwise velocity perturbations to the top and bottom of the clockwise vortex are
positive and negative, respectively, while the vertical velocity perturbations to the left
and right of the clockwise vortex are positive and negative respectively. The
perturbations produced by the counterclockwise vortices are exactly opposite to those
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F 11. Contours of the velocity fluctuation corresponding to the Ka! rma! n vortex at the phase
instance shown in figure 9(a). The mean separation streamlines are superposed. (a) Streamwise
perturbation velocity, and (b) cross-stream (y) perturbation velocity.

produced by the clockwise vortex. However, both vortices produce exactly the same
distribution of the uh �h correlation. The distribution of this quantity is divided into four
quadrants whose axes are marked in the figure by thin lines and the origin is centred
about vortex centre. The sign of Reynolds shear stress seems to alternate as negative,
positive, negative and positive from quadrant I to quadrant IV, also marked in the
figure.

At Re¯ 300, the incoherent contribution to Reynolds stress is small and the total
Reynolds stress is approximately given by the coherent part alone. Contours of the
periodic component of the streamwise and transverse velocity fluctuations, uh and �h ,
corresponding to the phase instances shown in figure 9 (a), are shown in figures 11(a)
and 11(b) respectively. It can be clearly seen that velocity perturbations are mainly
dictated by the clockwise vortex situated near the wake centreline (figure 9a) and the
distribution of the perturbations is qualitatively as indicated in figure 10. The
distribution of Reynolds stress is consistent with the perturbation velocity distribution
shown in figure 11.

Figure 12 shows the instantaneous non-dimensional uh �h distribution at the six time
instances shown in figure 9. Figure 12(a) clearly shows the four quadrants of the
distribution and this can be easily correlated with the uh - and �h -distributions shown in
figure 11. The four-quadrant type distribution is also observed in figure 12(b, e, f ) and
this indicates that the Reynolds stress distribution is mainly due to one strong spanwise
vortex. In contrast, the uh �h -distribution is slightly more complex in figure 12(c, d ) and
this is due to the fact that at these phases both vortices are strong enough to influence
the uh �h -distribution.

The superposition of the vortex trajectory on the Reynolds shear stress indicates that
the coherent part of the Reynolds shear-stress distribution in the near wake appears to
be mainly dictated by the vortex which is in Phase II. The vortex which has entered
Phase III is sufficiently downstream that its influence in and around the wake bubble
is small. The vortex which is in its incipient stages of formation in Phase I is also too
weak to make a strong contribution. However, in Phase II, the mature vortices
approach closest to the wake centreline and the shear-stress contributions of the
clockwise and counterclockwise vortices reinforce each other. Thus the vortices in
Phase II represent the coherent Reynolds-shear-stress producing ‘event ’ of the
shedding cycle. In fact the overall shear-stress distribution shown in figure 2(a) looks
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F 12. Distribution of uh �h correlation corresponding to the six phase instances
shown in figure 9.

as if it has been produced by a single strong vortex located somewhere in the beginning
of the Phase II region of the vortex trajectory.

In the preceding discussion, we have shown that the spanwise Ka! rma! n vortex in its
Phase II regime dictates not only the Reynolds shear stress distribution in the near
wake but also the shape and size of the mean recirculation region through the location
of the reattachment point. It stands to reason that Reynolds shear stress will change
sign in the vicinity of the separating streamline. Therefore, the near-zero value of the
coherent Reynolds shear stress distribution along the periphery of the wake is not a
mere coincidence. The above line of reasoning can be used to explain the distribution
of the coherent contribution to the Reynolds streamwise normal stress as well. Again
the primary contribution is when the vortex is at the beginning of Phase II and this
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relation can be clearly observed in the close resemblance of the distribution of uh in
figure 11(a) and u«# in figure 2(b). Similar scenarios of vortex evolution and Reynolds
stress distribution have also been observed in the other cylinder and normal-plate
geometries. This suggests that our observations regarding the coherent contribution to
Reynolds stress distributions along the separating streamlines may be universally
applicable, irrespective of the bluff-body geometry and the actual Reynolds number, so
long as the Ka! rma! n vortices strongly interact in the near-wake region.

4. Discussion and conclusions

Table 3 provides a convenient way to compare at a glance the net contribution to the
force balance from pressure and Reynolds stress components for the various cases
considered in this study. Based on this result, the 10 cases seem to divide into two
different sets : the cylinder geometries of circular, elliptic and square cross-sections and
the normal flat plate. In the former, the net streamwise force due to normal stress,
which is pointed against the flow direction, dominates over the net streamwise force
due to the shear stress, which is pointed along the flow direction. As a result the
pressure on the leeward side of the body is higher than the pressure along the
separating streamline and the net pressure force on the wake bubble is also directed
away from the body along the flow direction. On the other hand, in the case of flow
around a normal plate the net streamwise force due to the shear stress dominates over
the net streamwise force due to normal stress. As a result the pressure on the leeward
side of the body is lower than the pressure along the separating streamline and the net
pressure force on the wake bubble is also directed against the flow direction.

In all the cases considered the contribution to the force balance from normal stress
is significant. The peak value of normal stress coefficient occurs along the separating
streamlines somewhere between the separation and reattachment points. This peak
value is observed to be around 0±2 uniformly in all the cases, except perhaps for the
square cylinder where the experiments of Lyn et al. (1995) have measured a peak value
of close to 0±3. In contrast the normal stress at the reattachment point (R

n
) shows

considerable variation from case to case as it varies from near zero at low Reynolds
numbers to close to the peak value at higher Reynolds numbers. Thus, it appears that
the distribution of the total normal stress changes with the bluff-body shape and with
Reynolds number. This variation can be understood in terms of the coherent and
incoherent contributions. From figures 4 and 7 it can be seen that the incoherent
contribution to the normal stress is nearly a constant all along the separating
streamlines, except close to the separation points where the normal stress rapidly
approaches zero. This gives the plot of Cq

n
its characteristic rectangular shape in figures

4 and 7. On the other hand, the coherent contribution to the normal stress reaches its
peak a short distance from the separation point and then continuously decreases
towards the reattachment point along the separating streamline. This gives the plot of
C�

n
its characteristic triangular shape. Together they explain the change in the shape of

the total normal stress distribution with increasing Reynolds number.
The coherent contribution to the normal stress decreases with Reynolds number,

possibly due to the weakening of the large-scale vortices at the expense of fluctuations
at smaller scales. In the cylinder geometries the incoherent contribution is negligible at
lower Reynolds numbers when the shear layers are laminar. But as Reynolds number
increases and as the shear layers become unstable, the incoherent contribution to
normal stress increases substantially. In the case of the normal flat plate, even at low
Reynolds numbers, the incoherent contribution to the normal stress is significant due
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to the irregular nature of the shedding process arising from the low-frequency
oscillation. Interestingly, in the normal-plate geometry the incoherent contribution to
the normal stress has remained nearly the same over the Reynolds number range of 250
to 28000 considered in this study. It is not clear if the incoherent contribution to the
normal stress will remain at the same level at even higher Reynolds numbers when the
shear layers are strongly turbulent.

As shown in §3.5 the coherent Reynolds shear stress is in general so small all along
the periphery of the mean recirculation region that it can be reasonably neglected in the
force balance. In the cylinder geometries, the incoherent contribution to the shear
stress is small at low Reynolds numbers. From figure 4 it can be seen that as transition
moves upstream into the shear layers the incoherent contribution to shear stress
increases. The shear stress coefficient is constrained to be zero along the wake
centreline, but in all the three cases, Re¯ 3900, 21400 and 140000, Cq τ quickly reaches
a value of approximately 0±05 near the reattachment point. At Re¯ 3900 the shear
stress remains appreciable only in the downstream half of the separating streamline
and is nearly zero in the upstream half. At Re¯ 140000, however, the transition point
would have moved upstream closer to the separation point and accordingly the
experimental data suggest that Cq τ remains significant all along the separating
streamline and slowly approaches zero at the separation point.

In the case of a normal plate, the coherent part of the shear stress still makes a
smaller contribution than the incoherent part. The presence of a non-zero incoherent
contribution to shear stress even at Re¯ 250 can be attributed to the irregular vortex
shedding. Oscillations in the wake at a low frequency in addition to the primary
shedding frequency accounts for the significantly higher Cq τ measured for the
Re¯ 28000 normal plate than the corresponding cylinder cases. Therefore, the total
shear stress distribution around the mean wake bubble of a normal plate is
systematically higher than in the cylinder geometries. For example, at high Reynolds
numbers the maximum Cτ E 0±1 for the normal plate is nearly twice as large as the
corresponding maximum value of Cτ E 0±06 for the cylinder. This increased level of
shear stress in a normal plate, along with the somewhat longer wake, results in a net
shear force larger than that due to normal stresses, thus explaining the fundamental
difference in the direction of the pressure force.

Even though the origin of the irregular shedding mechanism in the case of the
normal plate is not yet completely resolved and is under investigation (Najjar &
Balachandar 1997), its dominant role in the normal plate underscores the importance
of the shape of the bluff-body geometry in determining its drag and lift forces. The
presence of an afterbody downstream of the separating point seems to play an
important role in stabilizing the shear layers and in mitigating any low-frequency
oscillation at low Reynolds numbers. For example, the normal plate and square
cylinder are similar in many respects in terms of the fixed separation points at the front
corners and the characteristics of the separating streamline leaving the surface.
However, the presence of an afterbody in a square cylinder seems to alter the shear
layer dynamics, the roll-up process and the large-scale vortex dynamics. In this regard
a future systematic study ranging from a normal plate to square and rectangular
cylinders will be useful.

For modelling purposes it is desirable to seek a universal value for the streamwise
normal and shear stresses along the separating streamlines. The average streamwise
normal and shear stresses, defined as ©C

n
ª¯ [C

n
]D}H and ©Cτª¯ [Cτ]D}L, are

plotted in figure 13 against the universal Reynolds number, 2HU
e
}ν, for all the cases

considered. The tendency towards a universal value can be observed at higher
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Reynolds numbers. At the higher end of the Reynolds number range considered, ©C
n
ª

approaches a value of 0±16 and 0±14 for the cylinder and normal-plate geometries
considered and ©Cτª approaches a value of 0±04 and 0±055, respectively. It must be
cautioned that the Reynolds number range considered covers only the laminar and
transitional wakes and that the attached boundary layer remains laminar even in the
case of a circular cylinder at Re¯ 140000. From figure 13 it is not completely clear if
the observed difference between the cylinder and normal-plate geometries will exist at
even higher Reynolds numbers when the separation is fully turbulent. The asymptotic
values of 0±16 and 0±14 for the average normal stress coefficients are lower than the
corresponding peak value of approximately 0±29 measured along the centreline of a
canonical free shear layer by Liepmann & Laufer (1947). However their measured
value along the dividing streamline ranges from 0±14 to 0±17 sufficiently downstream,
which compare favourably with the present estimate. On the other hand, the average
shear stress coefficient for both the cylinder and normal-plate geometries is nearly
twice as large as the canonical value of 0±025 quoted by Roshko (1993b) based on the
experimental results of Liepmann & Laufer (1947).

Based on the above asymptotic values of ©C
n
ª and ©Cτª, an estimate for the

difference in average pressure coefficient between the leeward side of the bluff body and
the separating streamline applicable at high Reynolds number can be written as
(0±04L}H®0±16) and (0±055L}H®0±14) for the cylinder and normal-plate geometries
respectively. In the context of pressure measurement along the wake centreline, the
above formulae can be considered as an estimate for the pressure recovery coefficient
at the reattachment point. For the Re¯ 3900 circular cylinder case, ©C

p
ª¯®0±019,

directly obtained from the computational results compares reasonably well with an
estimate of ©C

p
ª
est

¯®0±026 obtained using L¯ 1±99 and H¯ 0±6 (see table 2).
Comparisons with the results of lower Reynolds number simulations are not so good,
owing to the asymptotic nature of the formulae and to the increasing contribution from
viscous stresses to the force balance. In order to further verify the above estimates,
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pressure measurements are needed at high Reynolds numbers over different bluff-body
geometries, at least along the wake centreline. Also needed are simultaneous streamwise
velocity measurements to locate the reattachment point.

The different computational results presented here have been performed on the Cray
C90 at Pittsburgh Supercomputer Center, on the CM5 at the National Center for
Supercomputing Applications (NCSA) and on the Cray C90 at NASA–Ames. The
authors would like to acknowledge sincerely Professors B. Cantwell, A. Krothappalli,
D. A. Lyn and A. Leder for providing access to their experimental data. F.M.N. was
supported by a postdoctoral fellowship from NCSA and the Division of Advanced
Scientific Computing (DASC) at the National Science Foundation.
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